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Abstract. The static relaxation and the lattice dynamics of rectangular edges of quadratic
bars of four rock-salt-structured alkali halides is calculated using a shell model. The
relaxation includes a large-scale contraction of the bar as well as tip-localized microscopic
static displacements. The phonon spectra of relaxed quadratic bars are presented and modes
localized at the edges are identified.

1. Introduction

During the last few decades the lattice dynamics of alkali halide surfaces has been thoroughly
investigated and various surface modes have been found [1]. Such surface phonons have
their maximum vibrational amplitude at the surface and are of plane-wave character parallel
to the surface. One theoretical approach for the calculation of these modes is the so-called
slab method. The aim of the present work is to find phonon modes at crystal edges which are
localized at the tip of an edge and are extended along the edge. In a previous investigation
[2] the slab method was extended to quadratic bars in order to study the statics and the
dynamics of crystal edges. However, very simple rigid-ion models have been used, which
only show qualitative trends, but do not give quantitatively reliable results. Based on these
preliminary investigations an advanced approach to these systems is given using the shell
model which, in addition to short-range and Coulomb interactions, also takes into account
the polarizability of the ions [3, 4]. The shell model has proven to be a very reliable
framework for the calculation of bulk and surface phonons of alkali halides [1]. Therefore
edge-localized modes of alkali halides obtained by this approach are expected to be realistic.

Edges are of particular interest since symmetry is strongly reduced compared to that of
the surface. This allows a more subtle investigation of the interatomic potentials. Moreover
steps, i.e. edges, can be considered as one of the simplest types of defect of crystal surfaces
which should be relevant in chemical processes (e.g. as catalysts).

The approach used here is valid for surfaces with high steps, in contrast to investigations
dealing with small steps at surfaces [5]. Other investigations by Chenet al [6] were
concerned with the lattice dynamics of finite microcrystals using a rigid-ion model. An
advantage of the new approach lies in the one-dimensional translational symmetry, which
allows for classification of the eigenmodes by their wave-vectors.

The paper is organized in the following way: in section 2 the application of the shell
model for crystal bars is outlined, in section 3 the structure of the relaxed bar is discussed,
and in section 4 the dynamics of quadratic bars is presented and edge-localized modes are
identified. The results are summarized in section 5 along with conclusions.
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2. Formalism

The shell model takes short- and long-range polarizabilities of the ions, Coulomb interactions
and short-range interactions into account. In the same way as was done by Sangsteret al
[7] the short-range interaction is assumed to consist of two contributions: Born–Mayer
potentials which exponentially decay and Van der Waals interactions as calculated by Ruffa
[8] (see the appendix for details). The model parameters are obtained from a least-squares
fit of the experimental data for the bulk crystals. Good agreement of calculated surface
phonons with helium scattering data is achieved when using the following bulk properties
as input data for the fit [9].

1. Dielectric properties, i.e. the static dielectric constant and the high-frequency diel-
ectric constant.

2. Elastic constants:c11 andc12.
3. Phonon frequencies at the0, X and L points obtained from neutron scattering.
4. The cohesive energy of the bulk.
5. The pressure derivative ofc44.

Experimental values for 1–4 are taken from [7], and for 5 are taken from [10]. For the
calculation of surface and edge properties, the bulk potentials are used without modification.

The parameters used in this investigation fulfil the equilibrium condition of the bulk.
Usually bulk shell models violate the equilibrium condition in order to simulate three-body
interactions [11]. In the case of most alkali halides these interactions are small and may be
neglected. Moreover breaking of the equilibrium condition would lead to a violation of the
rotational invariance and thus to a non-vanishing frequency of the torsional acoustic mode
of a relaxed bar in the long-wavelength limit [2, 6].

For the investigation of crystal edges a quadratic bar is used with (100) and (010)
surfaces extending infinitely in thez-direction. The unit cell consists of the atoms of two
neighbouring layers parallel to thex–y-plane. The bar is constructed from the unit cell and
a one-dimensional translation in thez-direction.

The relaxed atomic positions are determined by a Newton–Raphson scheme described
in [12]. As in the case of alkali halide surfaces only few iterations are needed to achieve
convergence.

The dynamics of the bar can be computed by a method similar to that of slab calculations
[1]. Due to the periodicity of the lattice bar in thez-direction, the dynamical matrix can be
written as

D(q|κκ ′) =
∑

l

1√
mκmκ ′

φ

(
0 l

κ κ ′

)
exp[iq(z(0κ) − z(lκ ′)]

with the one-dimensional wave-vectorq, wherel denotes the unit cell,κ is the atomic index
inside the unit cell,φ is the force constant matrix,mκ is the mass of one atom andz(lκ) is
the z-component of the position of an atom.

The Coulomb summation is done directly in real space by taking interactions with
atoms within 40 nearest-neighbour distances (40r0) into account. For all of the calculations,
quadratic bars with 9×9 atoms per cross section (i.e. 162 atoms per unit cell) have been
used if not stated otherwise.

3. Structure of the relaxed bar

At the surface of the unrelaxed bar the equilibrium condition is violated. This gives rise to
relaxation normal to the surface as well as surface stresses.
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Table 1. Distances between core positions of tip atoms and their second neighbours in the
x–y-plane in units of the bulk second-neighbour distance.

NaCl NaI KBr KI

Cation 0.96 0.95 0.97 0.96
Anion 0.97 0.98 0.97 0.98

This stress leads to a large-scale deformation of the bar, which leads to an inward motion
of the tip atoms of about 5% of the nearest-neighbour distance away from its ideal position
and falls off with increasing distance from the tip. Compared to the relaxation of the infinite
surfaces of alkali halides the relaxation decreases very slowly and involves many atomic
sites. The results are similar for NaCl and also similar to earlier findings for short-range
interaction models [2]. This is not surprising, because the surface stress is primarily due to
the lack of second neighbours at the surface [2, 6] and hence it is mainly governed by the
short-range interactions.

Deformations caused by the surface stress are usually not observed in slab calculations
due to the use of periodic boundary conditions. A similar contraction is found for KI and
NaI. However, the pattern features additionally a strong inward relaxation of the surface
cations.

For all four alkali halides the maximum contraction occurs at the tip of the bar. In
table 1 the distance between a tip atom and its second neighbour in thex–y-plane is given
for the case of a 9× 9 bar. The distance is shortened by few per cent of the ideal distance
and is quite independent of the size of the bar.

Table 2. Dipole moments of the edges and the surfaces of a relaxed 9× 9 bar in units ofer0

as defined in the text.

NaCl NaI KBr KI

Cation
Tip 0.0258 0.0395 0.0278 0.0283
Next to tip 0.0160 0.0250 0.0177 0.0181
Middle of surface 0.0152 0.0238 0.0170 0.0174

Anion
Tip 0.0399 0.0711 0.0402 0.0562
Next to tip 0.0240 0.0445 0.0243 0.0346
Middle of surface 0.0227 0.0405 0.0230 0.0324

Total
Tip 0.0027 0.0038 0.0035 0.0035
Next to tip 0.0016 0.0024 0.0020 0.0021
Middle of surface 0.0015 0.0020 0.0018 0.0020

The main features of the microscopic displacements can be described in terms of dipole
moments. The atomic dipole moment of a relaxed atom is defined by the product of shell
charge times the distance between the core and shell of an ion [11]. The dipole moments of
the tip atoms are almost twice as large as the dipole moments of the corresponding surface
atoms. The relaxation of the atoms next to the tip atom is basically identical with the
relaxation of atoms situated in the middle of one face (table 2). The atomic dipole of the
cations is pointing inward, whereas the dipoles of the anions point away from the bar.
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The absolute values of thex–y-components of the total dipole moment calculated from
the cores and shells of one pair of neighbouring atoms having identical idealx–y-positions
are also given in table 2. The total dipole moment is also increased at the tip compared to
the surface. However, due to the relative displacement of cations and anions it is strongly
reduced compared to the atomic dipole moments. The total dipole moment of the tip is
pointing inwards for all four alkali halides.

4. Dynamics of relaxed bars

The phonon dispersion curves of crystal bars consist of three characteristic features: bulk
bands, surface bands and edge modes which are fourfold degenerate in the chosen geometry.
Since a quadratic bar has C4v symmetry each edge-localized mode corresponds to one two-
dimensional and two one-dimensional irreducible representations.

Figure 1. The phonon dispersion of the relaxed 9× 9 bars of NaI and KI. The wave-vector
extends fromq = 0 to the zone boundary. The frequencies of edge-localized modes found by
inspection of the eigenvectors are marked with♦.

As known from conventional calculations of surface dynamics, gaps can appear in the
projected bulk dispersion where neither bulk nor surface states exist. Inside these gaps
localized edge modes may be found. In figure 1 the dispersion relations of relaxed crystal
bars of KI and NaI with 9×9 atoms per cross section are shown. The corresponding
dispersion relation for KBr looks similar; however, the gap is smaller; and for NaCl the
projected density of bulk modes has almost no gap at all.

The macroscopic acoustic and optical modes have been discussed in detail in [2]. We
will now discuss the microscopic modes using the more realistic shell model.

In KI and NaI some edge-localized modes can be identified easily since they are situated
in the gap. In order to identify localized microscopic modes for NaCl and KBr, one can
examine a modified problem by keeping two adjacent surfaces of a 3×3 bar, and 4×4 bar,
respectively, fixed. Modes with a small amplitude near the fixed atoms are of particular
interest. If the eigenvectors and eigenfrequencies of certain modes of the 3×3 and 4×4
systems are similar, one may conclude that these modes correspond to localized modes which
might become resonant with surface- or bulk-type modes in larger bars. By comparison
with the 9×9 system, five edge-localized modes can be identified forq = 0:
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Figure 2. The tip projected density of statesJ (ω, q) for longitudinal (L), transverse symmetric
(TS) and transverse antisymmetric (TA) polarization for the four alkali halides KBr, KI, NaCl
and NaI. Dark regions in the plot correspond to a high value of the projected density.

E1: a longitudinal symmetric mode which is most strongly localized at the tip;
E2: a transverse symmetric mode with main amplitudes at the tip;
E3: a transverse antisymmetric mode with main amplitudes at the tip;
E4: a transverse symmetric mode with main amplitudes at atoms next to the tip;
E5: a transverse antisymmetric mode with main amplitudes at atoms next to the tip.
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Table 3. Frequencies of edge-localized phonon modes of the alkali halides KBr, KI, NaCl and
NaI within the shell model and of NaI within the short-range-interaction rigid-ion model (B)
used in [2]. The first frequency corresponds to a 4×4 bar with two adjacent surfaces kept fixed
and the second to a 9×9 bar with free surfaces. L (T) denotes modes with displacements mainly
in the longitudinal (transverse) direction. S (A) denotes symmetric (antisymmetric) modes. A
dash indicates that a mode could not be identified, brackets indicate a mode whose pattern is
less clear due to hybridization. All frequencies are given in units of 1013 rad s−1.

KBr KI NaCl NaI NaI ([2], model (B))

Zone centre
E1: LS 2.14 1.84 2.87 1.93

2.14 1.84 2.87 1.92 2.21
E2: TS — (1.91) — 2.16

— 1.80 — 2.17 2.11
E3: TA (2.16) (1.89) — —

2.17 1.80 — — 1.84
E4: TS 2.04 — — —

2.03 1.78 — —
E5: TA (1.78) 1.60 — 1.90

1.81 1.61 — 1.91 1.94

Zone boundary
E′

1: LS 1.48 1.14 2.27 —
1.47 1.13 2.34 —

E2: TS — 1.76 — 2.13
— — — — 1.95

E3: LTA 1.85 1.71 (2.65) 2.02
(1.82) 1.71 — — 1.80

E4 + E1: LTS 1.84 1.67 (3.70) 2.00
1.84 1.68 — 2.01 2.01

E5: LTA 1.85 1.62 — 1.94
1.87 1.63 — 1.95 1.92

For finite wave-vectors, transverse and longitudinal components mix. At the zone
boundary, similar modes are found, which can be attributed to zone-centre modes as given
in table 3. Furthermore a new mode appears at the zone boundary which is denoted by E′

1.
In table 3 frequencies of tip-localized modes are listed for the four alkali halides. Also

given in table 3 are the frequencies of localized modes found within the framework of a
short-range-interaction rigid-ion model for NaI [2]. The eigenvectors and eigenfrequencies
of localized modes compare well with the shell model for NaI.

In order to allow for comparison with experiments it is useful to calculate the projected
density of states for different polarizationsξ given by

J (ω, q) dω =
∑

j

∑
ωj ∈[ω,ω+dω]

κ at tip

|ξ · w(κ, q|j)|2

wherej labels different phonon branches,w is the normalized eigenvector, andκ is the
index of atoms in the unit cell. Only atoms right at one tip are taken into account. Three
polarizationsξ are considered: longitudinal (corresponding to the E1 modes), transverse
symmetric (E2 modes) and transverse antisymmetric (E3 modes). The densities are shown
in figure 2. Regions with high projected densities correspond to localized modes as given
in table 3. Moreover one can identify resonant modes easily, even if no edge modes can
be found clearly by inspection of the eigenvectors (e.g. NaCl: TS).



A shell-model analysis for alkali halides 4887

5. Conclusion

This investigation presents a unified approach towards the statics and dynamics of crystal
edges of alkali halides. The relaxation exhibits two characteristic features, a large-scale
contraction of the bar and a tip-localized increase of the dipole moments. The total dipole
moment of the edge is pointing inward. Due to the large-scale contraction it will not be
sufficient in such systems to consider relaxation of a small number of surface layers only.

The dispersion relation reveals bulk bands, surface bands and localized edge modes.
These edge modes have similar displacement patterns for the materials discussed. Moreover
the modes found here are very similar to modes found using a simpler rigid-ion model and
models using short-range interactions only [2].

A promising system for the experimental detection of edge modes would be a stepped
surface with large steps. The (110) surface of NaCl is predicted to be unstable [13]. If
this instability can be used for the generation of a regular array of edges, helium scattering
experiments on this system would be of great interest.

Acknowledgments

It is a pleasure to thank A P Mayer and U Schr̈oder for stimulating discussions. This work
was supported by the Deutsche Forschungsgemeinschaft through Grant No Ma 1074/5-1
and through the Graduiertenkolleg ‘Komplexität in Festk̈orpern: Phononen, Elektronen und
Strukturen’.

Appendix. Potential parameters

The short-range potential acting between the shells of nearest-neighbour and next-nearest-
neighbour atomsi andj is assumed to consist of Van der Waals interactions and Born–Mayer
potentials:

V SR
ij (r) = V VdW

ij (r) + V BM
ij (r) (A.1)

with the Born–Mayer potential given by

V BM
ij (r) = aij exp(−bij r) (A.2)

and the Van der Waals interaction by

V VdW
ij (r) = cij

r6
+ dij

r8
. (A.3)

Following Ruffa [8] the coefficientscij anddij are calculated solely from the shell charges
Yi and the harmonic core–shell coupling constantski (see [7] for details).

Using common notation, the longitudinal and transverse force constants of the short-
range potential are written as

Aij

2

e2

2r3
0

= ∂2V SR
ij

∂r2

∣∣∣∣∣
r=rij

(A.4a)

and

Bij

2

e2

2r3
0

= 1

r

∂V SR
ij

∂r

∣∣∣∣∣
r=rij

. (A.4b)

Here r0 is the bulk equilibrium distance between nearest neighbours andrij is the bulk
equilibrium distance between atomsi andj . In table A1 the parameters are listed.
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Table A1. Potential parameters of the four alkali halides.Xi denotes the core charges,Yi the
shell charges (i = ± for cations and anions respectively),ki the shell–core coupling constant,r0

the nearest-neighbour distance, andAij andBij the longitudinal and transverse force constants.

NaCl NaI KBr KI

X+ (e) −2.327 −1.551 −3.294 −2.985

Y+ (e) 3.320 2.556 4.280 3.972

X− (e) 2.016 2.568 2.001 2.941

Y− (e) −3.008 −3.573 −2.987 −3.928

k+ (e2/2r3
0) 367.8 171.7 620.1 528.4

k− (e2/2r3
0) 185.1 182.0 172.1 252.6

r0 (Å) 2.789 3.194 3.262 3.489

A++ (e2/2r3
0) −0.042 −0.242 −0.210 −0.206

A+− (e2/2r3
0) 11.25 11.82 13.55 14.13

A−− (e2/2r3
0) 0.031 0.382 −0.236 −0.088

B++ (e2/2r3
0) 0.021 0.034 0.029 0.029

B+− (e2/2r3
0) −1.289 −1.440 −1.35 −1.38

B−− (e2/2r3
0) 0.050 0.098 0.079 0.093
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